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Abstract The simulation results from a basic polyelectrolyte chain consisting of an
anionic string of 150 univalent negatively charged particles connected under various
harmonic-like potential interactions with each other in the presence of a similar num-
ber of positive and free counter ions found in Jesudason et al. (EPJE 30:341–350,
2009) forms the focal point for further discussion on chain models based on a survey
of more recent developments in general polyelectrolyte theory. The topics discussed
include persistence length definition, forcefields and methods of controlling simula-
tion parameters, and thermodynamics. The data for the basic system was derived for
the temperature range 0.1–10.0 in reduced units (corresponding to ξ = 10–0.1); the
augmented data involves a 360 monomer chain. The data include the total and Coulom-
bic energies, radial distribution functions, radii of gyration, end-to-end distances and
snapshots of the system which are all discussed anew. Polyelectrolyte systems have
been overwhelmingly associated with biophysical interpretations, but here it is sug-
gested that these detailed studies and the consequent theoretical formulations could be
extended further afield; non-biological ionic liquid systems with catalytic and energy
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storage applications are some of many other possibilities. However, the approach used
by MD simulations to validate ionic liquid systems as carriers of molecules with cat-
alytic moieties often refer to CPMD and DFT quantum methods, which is not the
current norm as judged by the literature in especially coarse grained polyelectrolyte
MD. The quantum approach could also be used for more detailed analysis of biophysi-
cal systems where one trend seems to be that the incorporation of details in simulations
accounts for phenomena not explicable in coarser grained MD, for instance if con-
ventional atomic ionic charges are assigned to all atom modeling. This is illustrated
by a linear chain modeling a DNA polymer using different charge and size assign-
ments for the same linear charge density. The trends are such that it might be expected
that some form of routine standardization of force fields in the spirit of the Jorgensen
OPLS-AA method that incorporates quantum calculations specific to a system will
be implemented as a routine as refinements are seen to lead to more comprehensive
rationalization.

Keywords Molecular dynamics simulation · Polyelectrolytes · Conformational
studies

Mathematics Subject Classification (2000) 65P10 · 82B30

1 Introduction

Here we interpret the results [1] of a basic polyanionic chain MD simulation in terms
of further consequent work[2] and other pertinent literature. Much of the computations
concerning polyelectrolyte systems over the last decade seem to primarily concentrate
on specific models with a view of rationalizing properties observed in real systems
e.g [3,4,6,5,7–29]. In a rather comprehensive Perspective article on electrostatic (ES)
force interactions [3], with a passing mention of electrodynamical forces e.g. London-
type forces [30, p. 1892] and hydration and entropic forces [31], one is drawn to the
general impression that whenever there is an extension to detail of the model [3, see
esp. Sect. 2] an accounting for some basic phenomenon can be made. For instance,
the forces between two long parallel double-helical macromolecules was elucidated
only about 1997 by Kornyshev and Leikin [24]. Such an elucidation of the force
fields (ff’s) lead to the realization that the counter-ion condensation occurs along the
grooves of the DNA strands. This in turn leads to the formulation of a force law due to
the electrical double layers formed by mobile counterions and the charge imbalance.
Such resultant interactions can then rationalize the fixed (‘discrete’) number of cation
adsorbed cations, sequence specific pattern of twist angles for adjacent bp’s, soliton
-like DNA twist deformations, and other phenomena linked to the potential variation
[3, p. 9944]. This further developed interaction energy

E(R, L) ≈ L[a0(R)− a1(R) cos δφ + a2(R) cos 2δφ] (1)

of a DNA duplex of length L at perpendicular distance R with azimuthal frustration
angle δφ has a coefficients that is a function of both f , the partition coefficient of
cations in the major grooves and θ , the overall charge compensation fraction that
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allows for consideration of charge distributions involving Donan equilibrium; a major
challenge for this model, even for its detailed complexity is to account for water
structuring in terms of hydration shells about the DNA [3, p. 9945, last paragraph]. Here
we observe that this challenge would point to further detailed refinement. Currently, the
force laws for these refinements tend to resort to solutions of the linearized Poisson–
Boltzmann (PB) theory with specified or imposed boundary conditions [3, ref.151]
and [5] with modified screening parameters (κk and κc

k for the screening inside and
outside the rod modeled for persistence length calculations). These modifications lead
to departures from the DH potentials [5, Figs. 1–2] which in the main is PB derived.
Indeed, in most instances, the PB equations are deemed appropriate [25, p. 953], and
for regions away from layers or surfaces where | eqϕ ≥ kbT |, the PB equation
reduces to the DH equation

∇2ϕ(r) = −4πρext (r)/ε + κ2
Dϕ(r) (2)

which is routinely utilized [25, p. 954] directly with the usual screening length para-

meter λD = 1/κD where λD = (
4πlB

∑
i ni q2

i

)−1/2
is the usual screening length

and this DH form is very effective not least because of compensating effects due to
finite ion size [25, p. 954, par. after eqn. 33]. In line with the above substantiation,
the interactions of DNA with proteins and histone NCP units are centered about these
PB force fields with due modifications due to structural details [3, p. 9958]. Notwith-
standing the discussion in [1, p. 341, Introduction] concerning the shortcomings of
DH potentials to account for chain collapse or possible phase transitions, the highly
developed techniques of mean field PB theories were used to account for some aspects
of chain collapse [4] via dipole-dipole and correlation-induced electrostatic interac-
tions. These dipoles are orthogonal to the tangent line of the polymer contour length
and summation of the interactions stochastically over the entire length lead to the net
attractive force. It appears that the theory follows the suggestion provided by Winkler
et al. [22, last sentence]. The average interaction energy has the form

〈
EDD(r) = −p4 exp−2κr

4r6ε2kB T

〉
(3)

where the screening parameter is κ . The proximity of the charges to form the dipole for
an overall neutral system would invite comments concerning the use of the screening
parameter and some follow below. The long range screened PB force fields are also
used for modeling the attractive forces between two helical DNA’s [24], which seems
very reasonable, as with modeling of NCP attraction mediated by DNA [6] featuring the
κ screening term, in conjunction with increasing details of the system, which implies
solving the classical PB equations with the boundary conditions consonant with the
additional details. Such solutions can give insight into general structure. Given the
fact that a 2π azimuthal rotation between 2 DNA molecules vertically aligned leads
to successive minima in the potential, such strips of charge on the DNA linked to
the NCP’s imply that the mutual azimuthal orientations of neighboring NCP’s will
alternate by ≈ π/4 (Eq. 1, p. 11434); this is in fact the major prediction in [6]. These
studies are carried out in conjunction with the availability of high resolution images
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of these structures, which again illustrates the trend towards incorporating details
derived from experiment with various standard ff’s, in particular the PB formulation.
The references above point to a very large literature and incremental research program
over several decades; here we review results due to simulations of a polyelectrolyte
chain [1,2] with the brief survey above serving as a background referring to some
aspects of the following:

i. Determination of variables such as the bending constant in MD
ii. Review and derivation of persistence length expressions different from that of

Manning, OSF and Dobrynin
iii. Reconstruction of thermodynamic equation of state and comment on κ for PB

derived potential equations
iv. Elementary considerations in topology that suggests applications to not only catal-

ysis, but to the construction of scaffolding and molecular structures, and to energy
storage systems due to the very large ES energies

v. Since progress in biophysical studies seems to be related to the incorporation of
structural details to models, it may be anticipated that the simulation protocols
used in ionic liquid (IL) and other complex non-biological systems studies to
derive molecular parameters directly from quantum chemical calculations for MD
simulations would be extended to polyelectrolytes, in particular the charge dis-
tribution and the use of non-symmetrical force fields. With increasing computer
power, one might anticipate that quantum chemical MD (such as CPMD) would
become the preferred MD technique.

The earlier work [1] provides a broad and detailed survey of theoretical meth-
ods that are used to rationalize polyelectrolytes interactions; here we present the
augmented data in relation to snapshots, providing suggestions of other possibili-
ties not covered in [1], in addition to some other follow-up work [2]. Previously, much
work centered mainly about mixed multi-charged (i.e. charges that were both posi-
tive and negative) polymer strands with counterions e.g. [32–34]. In these studies, the
so-called screen Coulomb potential, also known as the Debye-Huckel potential of
form U DH = lBkT q1q2 exp(−κr)

r were utilized. Such potentials are considered realis-
tic in “weak” electrolyte solutions and certain possible phase transition phenomena
such as reported here for a non-mixed charged polymer skeleton does not arise from
such interactions. Other examples of conformational studies utilizing the screened
Coulomb potential refer to the orientational correlation function [35]. These studies
tend to focus on different charge configurational arrangements at constant tempera-
ture. Here the configuration is fixed and the temperature is the free variable in the
simulations. The closest models to the current work aimed at free energy and entropy
elucidations involve entropic sampling with a view of deriving thermodynamical prop-
erties via� , the system density of state from Monte Carlo moves in coordinate space
[29,36,37]. Here the modified equations to the equation of state is quoted [2, eqn.
4.13, 4.14]. In particular, Klos and Pakula [37] examines some features related to the
structure of these polyelectrolytes on a f.c.c lattice using Monte Carlo moves as with
the others but uses an approximation to the Ewald summation method for electrostatic
interactions. The physical shape for instance of the end-to-end distances is not as sharp
as what is obtained here, and details in terms of RDF’s were unfortunately not pro-
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vided. The majority of mathematical treatments resort to solutions of the PB equations
and its various approximations, such as the linearized Debye-Huckel (DH potential)
as a solution [24,25]. The cornerstone for the successful application of this method
is the existence of ρ, the charge density. This quantity is made available through the
supporting electrolyte counter-ions, that are the main representations of the density
due to their smallness in terms of both mass and size, leading to a highly mobile
species. The small size implies that in setting up boundary conditions, the surface
radii of these ions can often be neglected when compared to the NCP and DNA or
polyelectrolyte strand. Obviously, with the breakdown of this approximation, counte-
rion size and other charge-inducing effects would assume importance. At this level of
refinement, however, one would be entering into the quantum realm of analysis, and
this is not yet the main focus of polyelectrolyte simulation which seems to be heavily
dependent on using the PB approximation in analysis with a few modifications to
account for such size effects, where the analysis is essentially classical electrostatic
analysis with some addition of dispersive force fields. For what follows, a classical
force-field with dispersion forces modeled after the Lennard-Jones variety would be
the main background assumptions, together with the validity of the PB-type equations
for modeling charge distributions about larger and more strongly charged entities like
the DNA polymer and NCP particles. Hybrid rationalizations too are possible, where
counter-ions are considered in terms of dipole-dipole attractive interactions to account
for the collapse of the polyelectrolyte [4]. Comments on some of these mechanisms
follow.1

2 Model, method and parameters

The model for [1] consisted of 150 bonded particles (360 in [2]), where each particle
represented the net charge of the repeat unit of the helix. The particles are connected by
a harmonic potential U h of the form listed below simulating a bond (5) and a bending
potential U b, (6). All particles interacted with the L J potential with parameters
depending on particle type. Details are described in [1] as are the number of runs, and
nature of the equilibration process and sampling process. The pertinent force-fields
and thermostats are described below. The computer simulation involved programming
a TCl script which drives a C based MD code named ESPResSo [38] in an NVT
ensemble. All ions interacted with the U C−P3M potentials. The pertinent parameters
and potentials for the interactions are defined as follows:

1. Non-bonded non-Coulombic Lennard-Jones potential L J :

L J = 4ε

(( σ

r − o

)12 − ( σ

r − o

)6 + s

)
(4)

where o is the offset, s the shift parameter, σ the distance parameter, r the coordi-
nate distance and ε the energy parameter.

1 I am grateful to a reviewer for emphasizing the role of the counterions that is sometimes neglected in PB
theory analysis.
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2. Bonded interactions

(i) Harmonic potential U h

U h = kh

2
(r − RH )

2 (5)

where kh is the force constant and RH is the “equilibrium” length between two
nuclear centers Pi and Pi+1.

(ii) Bending mode interaction potential U b

U b = kb

2
(φ − φ0)

2 (6)

Consider the three consecutive bonded centres Pi , Pi+1 and Pi+2. Define the angle
φ as the acute angle which can range from 0 to π (π ≤ φ ≥ 0) between the lines−−−−→
Pi Pi+1 and

−−−−→
Pi Pi+2. Similarly define φ0. Then for nonzero kb, the interaction

for φ0 = 0 corresponds at zero temperature to the situation of the formation
of a rod-like linear structure of the particles Pi linked together for maximum
extension, whereas setting φ0 = π corresponds to a chain collapsing on itself for
any equilibrium bond length Rh . Hence these two selections form an envelope
encompassing the entire range of interactions.

3. Non-bonded Coulombic interactions with potential U C−P3M

The standard Coulombic potential may be written in the form

U C−P3M = lBkT
q1q2

r
(7)

where the Bjerrum length lB is defined as lB = e2

4πε0εr kB T with the standard
assignment of variables {e, kB, T, ε0, εr } being the electronic charge, Boltzmann
constant, Kelvin temperature, permittivity in vacuum and relative dielectric per-
mittivity respectively. However (7) is computed in the Molecular Dynamics (MD)
cell using the so called P3M technique [39] with an error tolerance in the total
electrostatic energy less than tolerr for a series of random configurations, typi-
cally about 16 or more by adjusting or tuning the parameters connected to the
method.

Thermostatting was carried out by the so called “Langevin” thermostat which has
been described [40]; this method implies a synthetic algorithm where the equation of
motion of the system Hamiltonian is modified to a form [40, eq. 8]

mi v̇i = Fi + miγ

(
T0

T
− 1

)
vi (8)

where γ is an arbitrary coupling parameter, and T the instantaneous temperature
determined from the kinetic energy. To compare with previous results and theories
for fixed length chains [29,36], the chain length was kept constant to within 10 %

123



J Math Chem (2013) 51:1479–1514 1485

by scaling kh with temperature. The computations in [29,36] have a maximum chain
length of 81, and larger chain lengths seem to improve the statistics without introducing
new phenomena and phase transitions. Here we have extended the length to 150 in [1]
and 360 in [2]. If the extension from the equilibrium position of the Harmonic potential
is x , then equipartition gives for a canonical coordinate x, 〈x2〉 = kB

kh
T . Assuming

a loose validity of equipartition for the bond-distances, a large kh was chosen and
kh = 100T to ensure constancy of 〈x2〉. A more exact setting algorithm is described
below. This setting to preserve overall length is required to correlate with theories for
flexible non-extensible strings (e.g. in connection to persistence length and distance
correlation length theories). In work [2], a more exact algorithm was developed for
determining kh and RH which balances the Coulombic and harmonic forces [2, p.
14–17, Fig. 2.4]; clearly the method can be extended to higher order. The general
average equilibrium criterion is

FT otal(b,�) = Fharmonic(b,�)+ Fbending(b,�)+ FL J (b,�)

+FCoulomb(b,�) = 0 (9)

where b is the bond length ( b = RH at equilibrium),� are the other independent ther-
modynamical parameters relevant to the problem and the F’s are the forces associated
with the variable indicated by the subscript. The approximation made here is that the
forces between two adjacent monomers are sufficient, especially for systems that have
significant screening. Hence, Fbending = 0 and FCoulomb and FL J are computable.
Equating the forces at position b leads to a known function  [2, eqn. 2.14]

(kh) = r(RH = r at equilibrium) (10)

The energy of the adjacent polymer units at distance r,U (r) is a known function
as these are all defined in the ff’s. For a fixed temperature, the only unknown is kh

(from 10) where

r̄(kh) =
∫ ∞

0 r exp−U (r)/kB T dr
∫ ∞

0 exp−U (r)/kB T dr
(11)

for equal degeneracies over all r .The integral of (11) involves complicated � func-
tions but one can evaluate r̄(kh) numerically. From physical considerations, as
kh → ∞, , r̄ → RH . The evaluation of (11) ([2, Fig. 2.4] leads to a graph with
a very pronounced and sharp convergence of r̄ to RH for kh ≥ 2, 500 and the low-
est value is chosen to avoid computational singularities and overflows that would
result from higher values. Exhaustive runs at salt concentrations 0–100 mM shows
a maximum departure of the total contour length and average bond length of less
that 0.1 % with a faintly perceptible decrease in value at higher salt concentration
that can be attributed to screening, leading to a net attractive force between adja-
cent monomers [2, Figs. 2.5(a–b)]. This should be compared to the scaling used with
temperature in [1] of 10 % rms fluctuation and the absolute setting for all runs of
kh = 5000εL J /I 2

0 ; I0 = bond length [21,22].
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To ensure constancy of the Coulomb interaction, the Bjerrum parameter in (7)
was scaled according to lB = 1./T . If ξ , the reduced charge density parameter
which reflects the strength of the polyionic charge is defined as ξ = lB/RH , then
ξ = 1/(T RH ). For [1], σ = ε = 1, o = 0, s = 1/4 and L J was cut-off at
rcut = 21/6σ (= 1.12246) and the tolerance for the electrostatic energy was set
at 10−6 reduced units. In the other more extended treatment [2], consisting of 360
monomer units in the chain, with 12 NCP particles and salt concentration set at the
range 0.0-100mM of fully dissociated NaCl [2, p. 7], the Bjerrum length was set
to 7.13 Å at temperature 300 K corresponding to the water solvent dielectric. For
the runs in [2], the parameters in (4) are as follows which are scaled to correspond
to the following real parameters, where σ = soft core radii, o = sum of hard core
radii, s = constant s.t.L J = 0 at distance rcut where rcut = 21/6σ . The parameters
for this potential for [2] is scaled such that they represent the following real values
in the following format: {Parameter, DNA monomer, NCP, Na, Cl}, where {Radius
(Å), 10.0, 35.0, 2.0, 2.0}, {Soft core radius (Å), 2.0, 2.0, 2.0, 2.0} {Hard core radius
(Å), 8.0, 33.0, 0.0, 0.0}{Charge(e),−12,+150,+1,−1} {Mass (10−26 kg), 612.62,
18026.68, 3.819, 5.889} {Mass (reduced unit), 160.41, 4270.26, 1.0, 1.54}. For the
simulation with 360 monomer units, the bending constant kθ (≡ kb) was set by using
the formula kθ = L pkB T/b for all runs in [2], where b is the bond length and L p the
persistence length.

Four cases were investigated, Case(1–4) which had the following characteristics
for the polyanionic skeleton:

Case 1 No bending mode vibrations (6), with electrostatic interactions and the
standard harmonic interaction according to (5) mentioned above.
Case 2 Similar to Case 3 but with weaker bending rod-like extending interaction
with kb = 10 and φ0 = 0 (at zero temperature) with standard harmonic interaction
Case 3 Stiff rod-like extending interaction with kb = 120 and φ0 = 0 (at zero
temperature) with standard harmonic interaction
Case 4 Collapsing structure (at zero temperature) with kb = 5 and φ0 = π with
standard harmonic interaction

The different cases explore the behavior patterns over a wide interaction range; Case
4 corresponds to the situation of a directed bond with intermolecular forces keeping
the polyanion collapsed in a confined space whereas Cases 2 and 3 refer to a rod-like
topology at zero temperature. Case 1 is a fully flexible chain and Case 4 represents
the situation of forces within the polyanion such as when directed bonds are present.

3 Results and discussion

The computations involved

(A) probing the equilibrium structure of the system at different temperatures in terms
of :

1. distance correlation functions within the polyanion (Fig. 1), and development of
persistence length theories [2]
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2. radii of gyration (Fig. 2) and rms end-to-end distance of the polyanion (Fig. 3)
3. radial distribution functions (rdf’s) of 1–1 and 1–2 interactions (Figs. 6, 7) for

Cases 1–4
4. visual snapshots at 3 temperatures corresponding to the minimum size, maximum

size and size at high temperature T = 10.0 for Cases 1–4 (Fig. 10)
5. Shape topologies and postulate of ionic bridging mechanism

(B) examining thermodynamics in terms of

1. total energy (Fig. 4) and electrostatic energy at different temperatures (Fig. 5)
2. comparison to the situation with electrostatics turned off (Table 1 ).

Each of these will be discussed in turn.

3.1 Distance correlation functions within the polyanion and development of
persistence length theories

Define the Euclidean distance between atom Pi and Pj of polyanion chain as d(i, j).
Then the distance correlation function Dc(i) for interparticle label difference i for a
chain length of Nc = 150 was defined as

Dc(i) =
〈Nc−i∑

j=1

d( j, j + i)

Nc − i

〉

(12)

where 0 < i < Nc − 1. The normal analysis of distance conformation relate to
“persistence length” where the Debye-Huckel potential is usually used [41], and where
it is acknowledged that the theory is still obscure and not well developed [41]. It is not
clear how the normal definitions are directly equatable with the above. The general
appearance is that the gradients tend to unity for low and high values, with variable
gradient ≤ 1 at intermediate values of i , implying a type of “blob” structure tendency
at these intermediate values. The results for Case 1 is given in Fig. 1 only in terms of a
logarithmic plot. The plot seems to be consistent with the visual snapshots of Fig. 10
and the graphs of Rg and Re. The largest gradient is for the most extended regime
close to T = 1.0. Here the chain is nearly straight , according to the snapshots and the
high Rg and Re values and this explains the high linearity of the correlation function ,
especially at lower i indices; the slight curvature at very high i is due to the kinks and
semi-sinusoidal variations of the entire structure which can only be “observed” not
locally at low separation distances, but at “global” distances which becomes obvious
only at large i because these kinks lower the distance relative to large i , thus lowering
the gradient which is not in general the case at lower i values. At high T = 10, the same
argument applies as the structure becomes more reduced, with more kinks present at
shorter separations i , and so not only the gradient goes down, but also the non-linearity
of the graph becomes more pronounced. The low temperature T = .1 graph is very
interesting; at very low i , its graph is linear and coincides with the other two (implying
the same short range structure) but at higher i , the gradient rapidly falls to zero; the
nonzero gradient region follows the same argument for nonlinearity as above, but the
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Fig. 1 Distance correlation functions Dc(i) for polyelectrolyte for Case 1, with f (x) = x reference line

snapshots show that the polyanion has curled into a ball shaped structure which can
account for the flat gradient if other inferences are made; first if the ball were in fact
a type of coil structure with a repeat in the same direction, then one would expect
a periodic variation in Dc with i, which is not observed and so it is inferred that the
folding is random and inter-penetrating. This seems to be the case according to Fig. 10.
The log plot of Fig. 1 reveals another interesting structure if one postulates that Dc(p)
has the form Dc(p) = A(p, T )pδ(T ). The plot suggests δ(T ) → � 1 for T > 1 and
large enough p but where A(p, T = 1) �= A(p, T = 10). However, at low T (� 0.1)
this scaling rule seems inappropriate for at least δ The broad inference here is that the
folding patterns can be elucidated from such correlation metrics.

3.2 Radii of gyration and end-to-end distance

The radius of gyration Rg is defined as R2
g =

∑Nc
i=1(ri−rCM)

2

Nc
and the average end-

to-end distance by R2
e = 〈

(rNc − r1)
2
〉
where in the graphs , Rg is actually the averaged

value 〈Rg〉 of the instantaneously defined radius of gyration. Of interest is that the
maximum value of both Rg and Re with respect to temperature variation follows a
trend with increasing stiffness as measured by decrease of φ0 and kb, i.e. for the
sequence Case (4 →1→ 2 → 3), the maximum shifts from right to left in temperature
(i.e. from higher to lower temperature), and upwards to higher Rg and Re values. It
is also noticed that the Rg and Re graphs are similar in shape. According to standard
theories and assumptions concerning a long-enough chain length, for polymers that are
free to arrange themselves along a persistence length l p, there exists the relationship
R2

e = 6R2
g and the maximum for Case 1 for which there is no angular orientational

preference shows a discrepancy of about 30 % about the predicted value; the reason
may well be due to the chain being too short for the theory to obtain. One fruitful
area then is to create scaling theories of intermediate lengths which can relate Re

and Rg more accurately. The profiles for these quantities Figs. 2 and 3 also show a
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Fig. 3 End-to-end distances for polyelectrolyte

steeper change of gradient from T = .1 to the higher temperature maximum along
the above sequence. These curves appear typical if compared to those given in [29,
Fig. 9] for a chain on a cubic lattice. In conjunction with the energy profile, a phase
transition may be indicated according to some interpretations; [1] discusses this point
in greater detail. It was found that for Case 3, the very stiff rod-like system implied
that the maximum was rather extended with relatively high fluctuations about these
points during the equilibrium simulation and the shape at the maximum does not have
the pronounced maximum as observed in the Monte-Carlo simulation on a lattice [29,
Fig.9] for a simple polyelectrolyte chain.

Some aspects of dipole-dipole induced condensation has been described in [4],
where the assumption is that the PE starts to condense the mobile (monovalent) coun-
terions at e > e0 , where the PE linear charge density exceeds e0/ lB , where e, the
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monomer point-like charge density varies; e is standardized with respect to the Man-
ning prediction for a thin straight PE where θ , the fraction of cations condensed is
θ = 1 − 1/ξ , and above the Manning threshold e(1 − θ) = e0. Hence the study seems
to presuppose the regime specified by Manning theory, which [1] has shown cannot
fully account for the experimental values. It follows that other physical parameters
and presumably force-fields stronger than the DH or other PB equation variants might
account for the cause, so that what is being described could well represent the forces
that prevail after the condensation phenomena. The mechanism for the chain collapse
given is D–D interaction (3) of the dipoles perpendicular to the chain length due to
the condensed counter ions. The bending or torsional parameters contributing to the
forces that would impede the collapse are not described in detail. However, Cherstvy
[4] does caution that the Manning prediction is modified by various other factors [4,
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his refs. 28,29,53] (which corresponds to [18–20] here). Reference [1] discusses the
inadequacy of using DH-type forces to predict or discuss collapse. Figure 3 shows
the collapse profile where for a particular electrostatic charge intensity strength (as
represented by the temperature T ), Re is dependent on the nature of the twist or
bending intensity, whereas the Cherstvy solutions as depicted in Figs. (2–5) [4] for
various e/e0 values and chain lengths does not explicitly incorporated these torsional
constants, making it difficult to correlate data in [4] with the results here. One allied
topic to the discussion of Rg, Re and Dc here is the persistence length. We note that
the equations used assume continuity, at least of some order of the derivatives; the
experimental topologies, on the other hand (e.g. in Fig. 10g) shows well defined kinks
that cannot be explained by local equations with continuous variables and derivatives.
It seems that the thermodynamical equations must also take into account global para-
meters as well. Such routine incorporation is still at the initial stages, judging from
the literature here and in general. One definition of persistence length L p is given by

〈cos θ(s)〉 = e−s/L p (13)

where s is the distance from the arbitrary point on the flexible polyelectrolyte and θ(s′)
is the angle made by the tangent vectors at s = 0 and s = s′. Obviously this expression
presumes a continuous, self-similar behavior where θ(s′) is small; in particular it is
not applicable for chains with well-defined kinks (Fig. 10g); nor can this equation
apply to chains of indefinite length in a self-similar manner due to the singularities for
chains of indefinite length and also for some other reasons that follow. For s  L p ,
we have

〈
θ2(s)

〉
≈ 2s/L p. (14)

Using the bending modulus B parameter, the energy of bending can be related to kb,
the harmonic bending potential so that

L p = B

kB T
(15)

if one utilizes the Grosberg and Kholkov factor of 2 averaging [42, p. 8] because of
’two independent planes’ which seems to provide for the degeneracies in the third
dimension although the theoretical justification is probably more involved and not so
obvious. Their equation reads

〈
θ2(s)

〉
= 2

∫ π
0 e

− Bθ2/2s
kB T θ2(s)dθ

∫ π
0 e

− Bθ2/2s
kB T dθ

= 2skB T/B (16)

which leads to (14). We can relate the bending constant to the B modulus as B
2s θ

2 =
kθ θ2/2 leading to

kθ = B/b = L pkB T/b. (17)
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For what follows we refer to the development found in [2]. To incorporate the electro-
statics (OFS theory), Odijk [43], Skolnick and Fixman [44,45] defined the electrostatic
energy change as the energy difference of a straight chained polymer and that with cur-
vature due to the charges on the polymer only neglecting the counterion contribution,
leading to

�Uel(θ) ∼ lBq2
∞∑

n=1

(
e−κr(n)

r(n)
− e−κb(n)

bn

)

∼ lBq2θ2

8κ2b3 . (18)

Assuming this energy term can be incorporated into kθ (= kb) for the total bending
energy, they derive

L p = L0
p + L O SF = B + BO SF

bB T
≈

(
B + lBq2

4κ2b

)
/(kB T ) (19)

where

L O SF = lBq2

4κ2b2kB T
(where κ = 1/rD). (20)

We note that (18) involves summation n → ∞, or s → ∞ which does not fulfill
the initial assumptions requiring finite terms. Experiment on the other hand showed a
quadratic dependence on rD as in (20) only at low salt concentration (for large rD) and
a linear dependence at small rD . Dobrynin modified the OSF theory by incorporating
[45] torsional terms in the chain deformation energy energy leading to

L p = L0
p + LW LC =

(
B + 0.32lBq2

κb

)
/(kB T ). (21)

The Manning theory [46] has no linear additive term to Lp; his method is comparative,
relating L p to the persistence length of a null polymer L∗

p where the polymer anionic
group is not ionized and it reads

L p = (π/2)2/3 R4/3(L∗
p)

2/3 Z−2l−1
B

[
(2Zξ − 1)

κbe−κb

1 − e−κb
− 1 − ln(1 − e−κb)

]
(22)

where b is the bond distance, R the radius of the polymer, ξ = lB/b the charge strength
intensity, Z the counterion charge and 1/κD = rD the Debye screening factor. The
above formulation does not fully comply with one or more of the following conditions:

(A.) Equation (16) which relates L p to B the bending modulus (17) implies inappro-
priate application of (16) can result in unrealistic values of persistence length

(B.) The energy difference �E in the Boltzmann factor is for the total energy differ-
ence, where the ES energy must be explicitly included

(C.) 〈θ2(s)〉 is the quantity for a continuous segment and its reduction to bonds is an
approximation
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(D.) Equation (16) can only be applicable if s  B
kB T

The OSF theory derived from (16) has a single summation and so apparently double
counts the electrostatic interactions and assumes that the total energy is a linear sum-
mation of all the bond energies which does not accord with (B.) above. The Dobrynin
(D) theory makes much of the same assumptions are the OSF theory, but one could use
the torsional concept by constructing some form of degeneracy about the continuous
line segment s. The Manning theory is quite different from the OSF and D theories
but in his method [46, p. 3613], it is stated that “the persistence length of DNA is
many more times larger than the persistence length of its uncharged isomer” but from
calculations [2, p. 52, Fig 3.19] at salt concentrations > 50M, his L p is negative.
These observations seem to imply that the DNA L p cannot be smaller than the corre-
sponding uncharged DNA for at least some concentration regimes, which contradicts
simulation experiments (see results in [2, p. 46, Fig. 3.15(a–d)]. In attempting to derive
a preliminary alternative and first order expression for L p that satisfies the conditions
(A-D.) above, Agung [2, p. 28] writes the energy expression over a finite number of
terms to satisfy condition (D.) of a chain of n bonds arranged in a circular arc (s = nb)
where

�E = Bθ2

2s
+

n∑

i=1

n+1∑

j=i+1

lBkB T qi q j exp(−κri j )

ri j
(23)

with ri j = nbG and

G(n, θ, i, j) = 1

θ

√
2(1 − cos[(θ/n)( j − i)]). (24)

We use the Grosberg averaging method to compute 〈θ2〉. We realize that there are other
averaging methods to take into account the third dimension that can be developed or
utilized in the future. The Dobrynin use of torsion is one example of introducing effects
due to the third dimension. From the computation of 〈θ2〉, we derive L0

p = B
kB T (due

to normal bending and torsional motion in three dimensions) and the electrostatic
contribution to the persistence length becomes

Lel
p = 2lBq2n

θ2

n∑

i=1

(n − i + 1)

i
e−κbi . (25)

By observing the exact form of (25) by using a computer symbolic algebra simplifi-
cation where some separation of variables was possible, a curve fitting to the form [2,
p. 34, eq. 3.35] was attempted:

Lel
p ∼ 2lBq2n < 〈 f1(n)〉be−κb〈 f2(n)〉b >θ . (26)

The form for determining functions f1 and f2 was derived by fitting with simulation
data over a wide concentration range. The final form from the extensive curve fitting
for L p in Å units is:
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L p = L0
p + 2lBq2n(0.0071n + 0.0234)(b/ l0 + 21.17)−0.052κbn (27)

where l0 = 1Å for dimensional consistency. We note that (27) is n or segment depen-
dent, The above expressions of Agung (A) , OSF, Manning (M) and D are compared to
simulation experiments ([2, Fig. 3.15 a–d])for the standard DNA monomer of radius
10Å with NaCl counterions of radius 2Å, where the salt concentration cs varied from
0 to 0.25mM, and for this regime, the persistence length L p = 1100 at cs = 0 to
∼ 400 for cs = 0.25mM where L0

p = 500Å, which implies that Lel
p < 0, which

cannot be accounted for for all the theories above (M, OSF, D and A). Further, the
A theory passes very approximately midway through the graph at ∼ 900Å , passing
through some of the experimental points whereas OSF, D and Manning are signifi-
cantly off-scale. At very high cs concentrations (∼ 1.0 − 900mM) where computer
simulation data were not available due to limits of computer resources, data from real
experiments which have large experimental scatter show that within error uncertainty
the A,M and D models approach experimental results, but the OSF theoretical values
are off-scale except for very high concentrations (∼ 200 − 900mM)[2, Fig. 3.18, p.
50]. The real experimental data were derived from Smith et al. [47], Nordmeier [48],
Baumann et al. [49] and Rizzo et al. [50]. Agung [2, p. 51] proposes that the inequality
L polyelectrolyte

p < Lneutral polymer
p , a condition impossible for at least the OSF and

D theories can be accommodated into A theory by postulating an “ionic bridging”
mechanism, where the ff’s due to highly symmetrical solutions of the PB equations
are not applicable, and where as a result of the mobile cation accumulation, the DNA
polymer is bent or curved in one particular orientation which is borne out in detailed
simulation snapshots (e.g. Fig. 3.21, p. 55, Fig. 3.22, p. 57). Two modifications are
therefore proposed to A theory that might account for the anomaly:

1) Replacement of the D-H ff’s by another asymmetrical one
2) Introduction of a degeneracy factor G(θ) into the Grosberg averaging process [2,

p. 56] where

〈
θ2(s)

〉
= 2

∫
G(θ)θ2 P(θ)dθ

∫
G(θ)P(θ)dθ

. (28)

If this “ionic bridging” exists (giving rise to the asymmetrical curvature of the polyan-
ion) the G(θ) would increase

〈
θ2(s)

〉
and therefore decrease L p.

With the above discussion of persistence length, Re and Dc(i) can be viewed not
only as indicators of topology, but as bearing some relationship to L p under certain
assumptions. Assume that the coordinates of the last monomer of the polyion is at rn
( Re = rn − r0) and that n is small enough for (14) to be used for L p determination.
Defining μi(= μ1) = r1 − r0 as the bond vector where b = | < r1 − r0| > is the
average bond length, then the previous equations lead to

ln

〈
μi.Re

Reb

〉
= −nb/L p. (29)
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Assuming a sufficiently low correlation between any instantaneous Re = |Re| and
μi.Re then (29) can be written

ln〈Re〉 ≈ ln〈μi.Re〉 + nb2

L p
(30)

where nb = s is the contour length. If ln〈μi.Re〉 is fairly constant (one can expect that
although Re increases with n, the angle θ on average will also increase, nullifying the
increase in the scalar product), then ln〈Re〉 is approximately linear with n as suggested
in [4, Fig.2–3]. If L p is deemed constant, then 〈μi.Re〉 may be determined as a function
of n, if < Re > is known from experiment. With simulations, all the above equations
can be tested. Similarly for (30), under the same assumptions, with μi,0 representing
the initial bond vector, one might write

ln(|D(i)|) ≈ ln〈μi,0.D(i)〉 + b2i

L p
(31)

For Case 1 (Fig. 1) with no bending mode, a fairly linear profile is observed at higher
T implying a near unity and/or constant value of 〈μi,0.D(i)〉. The departure at low
T = 0.10 ⇒ 〈μi,0.D(i)〉  1 or some type of constant orientation of the tangent
vector of the polymer chain w.r.t. the s distance. Figure 3 gives some information of
the ξ = 1/T charge intensity parameter and how this influences the μi.Re factor.
With an apparent convergence at high T , if ln |μi.Re| → 0, then a high temperature
limit to L p may be computed. The relationship of Rg to Re and the above equations
is less clear-cut. Cherstvy (C) [4, his ref 23] provides data extracted from literature in
Fig. 5 where the R2

e scales as R2
e ∼ e−2 [4, Eqn. 15] where as before e is the net or

apparent monomer charge and at high chain charge density e/e0, R2
g also scales as for

R2
e (∼ e−2) [4, Fig. 5]. C also discusses other contributions, where the size is said to

scale as R ∝ N 1/3ξ−2/3, where N is the chain monomer number and ξ the Manning-
like parameter. It seems that the data in Figs. 1, 2 and 3 would require perhaps further
development of current theories to account for the results quantitatively at each point
in the curve even though the scaling behavior as reviewed here might be adequate.

3.3 Energetics

At low temperatures, one observes a convergence in electrostatic energy for all the
Cases (1–4) in Fig. 5, including Case 4. On the other hand, where the total energy is
concerned, there is a curious separation of Case 4 from all the others which refer to
either stiff external bonds or no bending interactions. In Case 4, the collapsed bonds
are stretched out at higher temperatures, which can be inferred from the snapshots of
Fig. 10; therefore in this complex situation, since the bending modes are still quadratic
in nature, there is an interesting coupling of this to the non-bonding LJ and Coulombic
interactions that allows for a much higher energy state that what strict equipartition
taken in isolation would allow. The interaction and collisions with the free cations
seem to extend the bond angle by some coupling mechanism so that the system can
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be viewed as one potentially of energy storage; as T → 0 then also Etot → 0
and the curves for Case (1–3) all coincide except for Case 4, where the snapshots
show a ball-like configuration at low temperature but a relatively high energy due
probably to the repulsions of the anionic particles not neutralized by the counterions,
unlike the others. As the brief survey of size and shape functions (e.g. Re, Rg, Dc(i))
indicates, the theoretical descriptions are on-going, often with the introduction of
higher-order approximations within the same overall theoretical structure. It seems
that the thermodynamical descriptions might also follow such trends. Polyions and
DNA strands have been modeled at the simplest level by using the Poisson–Boltzmann
Cylindrical Cell Model (PBCCM) [2,7–9] where the polyion is an infinitely long
charged rod with charge spacing (bond length) b placed in the center of a cylindrically
symmetrical sheath of radius Rc from the polyion central strand and with a surface
parallel to the strand axis [2, Fig. 4.4]. Defining ξ = l0/b as the electric charge intensity
parameter (where l0 is the Bjerrum length and b the distance between charges or the
bond length, the PBCCM potential solution has been derived such that the electrostatic
contribution to the energy Eel and entropy Sel per polyionic charge surrounded by salt
and counter-ion has the form [7–9]

Eel/[kB T ] = ξ

2lB
φm +

Rc∫

rM

2πr
∑

α

(zαρα(r))φ(r)dr (32)

for the energy, and the entropy [7,9] is given by

Sel/[kB T ] = −
Rc∫

rM

2πr
∑

α

ρα(r) ln

[
ρα(r)

ρ0
α

]
dr (33)

where rM is the distance from the center of the polyion to the surface. Rc is determined
via the DNA concentration term cDN A = ξ

4πlB NA R2
c

. Both Eqs. (32–33) as written

down explicitly are dimensionally inconsistent (they have dimension of L−1 on the
rhs). Korolev [7] and Stigler [9] computed φM and φ(r) using PBCCM and the RDF
function as the concentration ratio

g(r) = ci,M

ci,∞
= exp

(
− zi eψ(Ri,M )

kB T

)
(34)

where Ri,M is the distance of a mobile ion to the polyion surface. These choices
when solved do not reproduce the typical g(r) structure derived from simulations
or experiments with the typical fluctuation of mobile cations with the distance from
the polyion [2, Fig 4.5, p. 69 shows comparison with simulation] due to the uneven
distribution of charge along the polyion. Furthermore, κ , the DH screening parameter
ignore the ’third’ particle-type, meaning that the polyions are not accounted for in the
determination of κ (via the ionic strength term in the DH theory) which implies that
the potential and particle density obtain only for regions that are perpendicular to the
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axis of the DNA rod about a vertical distance b with no lateral interaction with the
potential differences along the polyion axis. To introduce this effect, the influence of
the other polyions, and to make the equations dimensionally self-consistent, Agung
[2, Sect. 4.4.1, p. 68] transformed the parameter lB/b to lB/Nb to denote the unit
over the polyelectrolyte length and introduced the density of mobile species α as
ρα(r) = ρ0

αgi
α(r) where gi

α(r) is the RDF of the α-type particle due to the monomer i
on the polyion summed over a convenient interval N (which may be the total number
of monomers), and gα(r) = ∑N

i=1 gi
α(r)/N . Then (32) takes the final form for the

energy

Eel/[kB T ]/(unit length) =
⎡

⎣ N

2
φm + N 2b

2

Rc∫

rM

2πr(
∑

α

zαρ
0
α(r)gα(r))φ(r)dr

⎤

⎦ /Nb (35)

and the entropy [7,9] is given by gross simplification of uniform or similar g function
over a very long chain as

Sel/[kB T ]/(unit length) =
⎡

⎣−
Rc∫

rM

2πr N 2b
∑

α

(ρ0
α(r)gα(r) ln gα(r))dr

⎤

⎦ /Nb (36)

where more general expressions are also developed [2, eqs. 4.21–4.23]. The φ(r)
potential is solved by using the PB equation for a cylindrical cell [9]. The above is a
study in its own right but these equations were successfully used to determine Eel , Sel ,
and Fel (Helmholtz Free Energy) for a spherical distribution of mobile counterions
about the polyion for the DNA-NCP interaction by a transformation of coordinates
[2, p. 76, Figs. 4.6(a–b)]. The Fel minima occurs about a flat plateau about the salt
concentration [0.001–0.01]mM that compares favorably to the simulation snapshots
of a system with 12 NCP particles interacting with the 360 unit long DNA strand [2,
p. 79, Fig 4.9] where maximum number of binding of the NCP particles to the polyion
is observed in this regime of salt concentration. There is also some correspondence
with the data from [12].

3.4 Distribution functions

The RDF’s were checked using the well known expression

ρ j

R∫

0

4πr2gi j (r)dr = n j (37)

and was found to be accurate to at least .1 % and furthermore the RDF’s were normal-
ized in the standard manner as with gi j in (37) where ρ j represents the average bulk
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density and n j the absolute number within the sphere of radius R ; The apparently
high values of the RDF’s are due in part to the box volume of 8 × 106 units and the
fact that a single chain with bounded beads were featured in the system; log10 scales
were used in the plots. The treatment of complex systems would require the develop-
ment of RDF’s that are orientation dependent; despite some peripheral hints scattered
in the literature, no exact theory has been developed. This also results in computer
packages implementing algorithms that pertain to isotropic radial pair distributions.
Thus at this stage of the development, the thermodynamics cannot be numerically
computed from these distributions accurately, and these distributions must be inter-
preted with the snapshots such as provided in Fig. 10. Figure 6a, b depicts Case 1
for the 1–1 (a) and 1–2 (b) interactions; the 2–2 free cationic interactions are uni-
formly spread out and are not too relevant here. In the graphs, the rdf’s all tail away
in a near exponential manner and attention is paid to the interactions (to about 4 unit
distance) close to the polyanion vicinity. The rdf seems consistent with the visual
structure in Fig. 10. The low temperature ball like structure with random winding (as
discussed above Sect. 3.1 implies at low distances a rather flat distribution with the
maximum shifted to the right because the low kinetic energies do not lead to closer
proximity to the negatively charged atoms on the polyanion; the extended structure,
which is very labile but nevertheless relatively “straight-chained” and therefore has
a regularity that is displayed in the zig–zag periodicity observed at T = 0.8 with
maxima (minima) separated by distance σ = 1 the diameter of the L J interactions.
The high temperature T = 10 structure is mid-way between these other two, and
because of the higher kinetic energy, leads to the maxima located to the left of the
others. The argument for the maxima or first zero point for the 1–2 interactions in
Fig. 6b is analogous to the 1–1 interaction; high temperatures allow for a greater spa-
tial exploration of particles 2, leading to an almost zero gradient at high internuclear
distances; and the heights of the rdf’s vary in opposite manner to the temperature; the
lower kinetic energies of particle 2 implies that they would congregate closer to the
negative core and further, they would be less likely to be found at further distances
implying some type of power-law decay in the amplitude of he curve; this is observed
for the curves at T = 0.8 and T = 0.1. Another interesting observation is a hint of
periodicity for the T = .1 curve; particle 2 is non-bonded, but its finite size arranged
about the globule leads to this partial periodicity in the same sense of typical liquid
phase RDF’s.

Case 2 Fig. 7 is very interesting especially when interpreted in relation to the
snapshots in Fig. 10d–f. Unlike Case 3, the rod-like orientation of the bending mode
has a weak bending constant of kb = 10.0. There does not exist any noticeable kinks
and so the RDF’s would approximate at low temperature those for Case 3 for higher
temperatures. At all stages of the 1-1 interactions, semi-periodicity is seen as for a
typical string structure, but the much lower bending constant implies that type 1 atoms
would interact such that no distinct bands of non-zero value would form; this is what
is observed; the semi-periodic structures are seen and become indistinct at high T
as the periodic bands merge and overlap. The interpretation for the 1–2 interactions
follows as for above, where the open string nature of the polyanion allows for some
semi-orderly arrangement of the 2 cations at low temperature; this feature is gradually
lost as the temperature increases.
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Fig. 6 Case 1 RDF for a 1 − 1 interactions, b 1 − 2 interactions

Case 3 (Fig. 8) represents rod-like interaction with a high bending constant; the sim-
ulations show large fluctuations as is evident from the error bars of the Rg, Re figures
at low temperatures and at high Rg, Re of the graph. There is a dramatic change in the
form of the RDF, but viewed qualitatively and visually via the snapshots, the structures
are linear with a central kink or kinks. It seems that one method to determine whether a
phase transition is involved is to examine the mean-squared fluctuations of the energy
or other variables that are pertinent rather than to use topological characteristics such
as “shape”. In any case, Case 3 (Fig. 8a) suggests (for 1–1 interactions) a type of tau-
tomerism of structures that have features of the cold T = 0.1 state and those at high
temperatures for the region T = 0.2 −0.8 about the region where the maximum Rg is
located. The 1–1 interaction at T = 0.1 shows not a globular structure but one where
there is generally a single kink centrally located in the polyanionic chain (Fig. 10g–i).
The two arms of this kink oscillate, so that although there is limited bending motion
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Fig. 7 Case 2 RDF for a 1 − 1 interactions, b 1 − 2 interactions

about the monomer bonds (except where the kink is), the proximity of the two arms
leads to the breakdown of a periodic lattice structure with distinct maxima and minima
; kinks also appear at the ends of the chain. In the case of T = .2, the symmetry of
the kink is broken and the kink seems to be transfer more to the end-point atoms of
the chain (Fig. 10h). Thus both are periodic structures moderated by the presence of
a kink that leads to similar RDF’s except for the details between the maxima due to
the different positions of the kinks. At slightly higher temperature (T = 0.5), the
kink structure is not favored and the structure reverts to a curved structure whose Rg

value is slightly smaller than that of a straight structure with a kink , at T = .2 but
whose RDF shows clear periodicity but with a broad band about the region of non-
zero value. At much higher temperature, this periodicity is partially retained, but the
bending and harmonic vibrations are large enough to span the band so that no non-zero
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Fig. 8 Case 3 RDF for a 1 − 1 interactions, b 1 − 2 interactions

value exists. The 1–2 interaction RDF (Fig. 8b) can be interpreted as for Case 1 above
with basically the same features but here at T = 0.1 the periodicity is more obvious,
probably because the symmetrical kink with bare charge polarizes the cations so that
they assume a semi-periodic arrangement about the polyanion; this periodicity is lost
at higher temperatures due to the greater irregularity of the polyanionic structure and
the kinetic energy of the free cation counterions.

Case 4 RDF 1–1 interactions Fig. 9 follows that same arguments as for Case 1,
the random coiling destroys periodicity except for the first and second neighbor dis-
tance because of the presence of a collapsing bending mode that draw nearest neigh-
bors together. At higher temperatures, for the 1–1 interactions this periodicity is lost
because of the coiling motion due to the low value of kb = 5 as the snapshots depict
Fig. 10j–l. The 1–2 interactions follows the same arguments as above; the features are
all quite similar; only the intensity of the periodicity at low temperatures differ.
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Fig. 9 Case 4 RDF for a 1 − 1 interactions, b 1 − 2 interactions

General remarks: The 1–2 interactions show a reasonable exponential drop in the
RDF with distance since the log-distance plots are linear. One might write the obser-
vation as RDF = A exp −k(T )r where k(T ) → 0 as T → ∞. The gradient char-
acteristics are less evident for the 1–1 interactions which are localized, but here, the
gradient of the plots for the different temperatures seem to be quite similar. At present
no comprehensive theory exists for non-isotropic species distribution that can pre-
dict or categorize phenomena such as phase transitions. For instance, from the visual
examination of the snapshots, we note that the shape of the RDF’s cannot in all cases
be unambiguously assigned to the respective snapshot. We note that theories of phase
transitions are based on simplistic model systems with well defined boundary con-
ditions that do not obtain for soft-matter complex systems. Thus in the absence of
robust theories for complex systems involving many species types and interactions,
the debate concerning whether phase transitions occur or not in this system [1, Sect.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 10 Snapshots for Cases 1–4: Case 1 a T = 0.1, b T = 0.8 and c T = 10.0; Case 2 d T = 0.1, e
T = 0.5 and f T = 10.0; Case 3 g T = 0.1, h T = 0.2 and i T = 10.0; Case 4 j T = 0.1, k T = 2.0 and
l T = 10.0
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3.1 and the refs. 5,30, 36, 37 therein] can be held tentative until more data especially
concerning the energetics (energy and other thermodynamical fluctuations, connected
to say the specific heat) is measured. Perhaps unfortunately, many well established
MD software are based on synthetic algorithms [51, Sect. 3.4] where non-Newtonian
equations of motion are integrated to maintain the constancy of certain thermodynam-
ical variables; these synthetic algorithms await rigorous proof that demonstrates that
the deterministic ’fluctuations’ of these continuous systems are equivalent to those of
mechanical systems conforming to Newton’s laws but subjected to stochastic distur-
bances so that they may be used to determine fluctuations of purely mechanical systems
to yield associated information like the specific heat from the fluctuations. However,
one can always resort heuristically as with experimentalists to defining phase transi-
tions in terms of threshold of such variables. In real experiments involving polymeric
and ionic liquid molecules, differential scanning calorimetry (DSC), NMR and X-ray
scattering has been used to characterize transition phases [52, p. 60, Sect. 3.1.2.1].

3.5 Snapshot commentary

As demonstrated above, visualization can be a valuable tool of interpretation for struc-
tural parameters. The snapshots below are not to scale, but have been captured to qual-
itatively assess the various configurations. Three extreme configurations of polymers
have been described by Haug in his triangle [53, p. 358]; here we illustrate how for a
single system, all three (and more, as in the symmetrical kink structure) may be real-
ized over a temperature range. Figure 10a (Case 1) shows a globular structure despite
same charge repulsions which long-range interactions can induce in a manner which is
perhaps not intuitively obvious, this polyanion reaches its maximum size at quite low
temperatures (b of same figure) , before again shrinking in size at higher temperature
(c of Fig. 10), which is also not intuitively obvious. As with all these cases, it may
be surmised that the mean kinetic energy of the particles might be involved in these
transformations, and not merely the potentials.

Case 3 for a stiff, rod-like polyanion is depicted in Fig. 10g–i; (a) shows a non-
globular symmetrical kink structure at low temperatures, with some further kinks at
the ends; (b) shows an elongated straight structure and (c) shows multiple kinks along
the entire chain, leading to a reduced Rg .

Case 4 Fig. 10j–l is again counter-intuitive because here, the bending vibrational
mode draws the type 1 atoms closer ; (a) shows that at low temperatures a globular
structure prevails, and (b) shows the polyanion at its largest at T = 2.0 despite
the bending mode which would force it to collapse, whereas (c) shows that at high
temperatures, even when it can overcome the natural forces of contraction, it then
assumes a smaller, more bent size. This example shows that long-range electrostatic
forces induces pattern and shape formation that may not be obvious. Case 2 (Fig. 10d–
f) is the same as Case 3 except for smaller bending constant kb = 10. Here, there
appears at low temperature the same tendency toward contraction by the external ionic
atmosphere, whereas this is relieved at intermediate temperatures only to be subjected
less drastically to the same external forces that favor contraction at T = 10.0.
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Table 1 Results for polymer
situation with electrostatic
interactions turned off for
system type A–C

Type Rg Re Etotal

A 9.92 ± .2 24.07 ± .5 604.98 ± .04

B 31.70 ± .4 87.0 ± 2.0 747.5 ± .2

C 8.1 ± .2 20.4 ± .4 34424.60 ± .2

3.6 Reference system without electrostatic interactions

The predominant forces in this system are due to electrostatic interactions. As a com-
parison with a reference, a system which is identical in all respects except that the
electrostatic interaction was switched off completely was studied all at the same tem-
perature T = 1.0, close to the maximum Rg namely:

Type A Case 1 with the same parameters without electrostatic interactions
Type B Case 3 with the same parameters, without electrostatic interactions
Type C Case 4, with same parameters except kb = 120, without electrostatic
interactions

For the above , the non-bonded L J potentials and the bonded potentials were
retained.

Table 1 provides some basic information. Type C was included to illustrate that in
a mixed environment where the coordinates were involved not just in bonding modes
but also in dispersal interactions, there is a general collapse of conventional quadratic
equipartition as witnessed by the very high Etotal of which the total energy amounts to
(34, 424.60±.2) as the structure is not stabilized by electrostatic interactions leading to
the opening up of the dihedral angle of the uncharged polymer chain due to interactions
with the polymer skeleton primarily and secondarily the “counterions” which could
interact if a large scattering cross-section were presented in for instance a blob or other
similar structure. This is not the case for the bond energy for types A and B. Also,
most of the energy from the polyelectrolyte is from the electrostatic contribution, from
both the 1–1 and 2–2 repulsion energies since the other 1–2 interaction is negative
in sign and one can compare the total energy of Type A and B with their Case 1
and 3 analogs. The Rg, Re values for Type A is severely diminished, implying some
type of long-range electrostatic energy which can stabilize the system for Case 1
interactions; it may be conjectured that the large negative charge repulsions on the
polyanion tend to keep these charges far apart, and that because the positive charges
have not condensed about the polyanion boundary, local repulsive forces predominate.
The details of the interactions appear not to have been worked out even for this simple
model. Type B interactions have large Rg, Re values due to the large bending constant
and the direction of the interaction. In this case, one might conjecture that for Case
3, the large Rg and Re values are due to both the large kb value and the electrostatic
repulsions which are not screened by the positive counterions; screening is effective
at lower temperatures as the counterions condense on the polyelectrolyte skeleton,
diminishing the magnitude of electrostatic interactions. Type C interactions show that
if the coordinates are mixed and fairly complex, equipartition would not obtain for
classical systems implying that the coordinates of a particular system must be examined
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to ensure that they are canonical and that they are separable from other coordinates
(for the vibrational modes); failure to do so may allow for interpretations that assume
canonical distributions when this does not obtain [54] in terms of MD evidence.

We show later that where distribution functions are concerned (such as RDF’s)
different models with different charge allocations [52, p. 207] on atomic sites can lead
to very different outcomes. Although charge allocations in a particular simulation is
ambiguous even when advanced quantum calculations are made, treatises often [52]
do not provide much data correlating these allocations with simulation outcomes and
experimental results. For such inorganic and non-biological organometallic systems,
such information may not be considered significant relative to the other forces that
predominate. On the other hand, these correlations for biological systems are probably
very significant; if found to be so, then another set of finer-grained MD would be
initiated as a routine.

4 The effects of the monomer model chosen to the radial distribution function
and persistent length

Much has been written and data generated to provide parameters for simulation whose
results are then correlated with experiments [52, Sect. 4.2]. Here is discussed the effect
of modeling the monomers of the polyanion DNA strand to the counterion distribution
profile by reasonably varying the charge distribution of the polyanion in the manner
below. We simulate a DNA-salt solution at fix temperature 300 K. From experimental
data, DNA is a polyelectrolyte where each phosphate group along the DNA chain has
charge −1. The axial distance between two consecutive phosphate groups is 1.7 Å,
The diameter of the DNA chain is 20 Å. We apply two kinds of monomer models. In
the first model, 6 base pairs of DNA containing 12 phosphate groups are united as one
monomer. Thus each monomer has charge −12 and the monomer–monomer distance
20.4 Å. The monomer radius 10 Å is fulfilled by applying appropriate parameters as
before for the Lennard-Jones non-bonded potential between monomer and ions. The
DNA monomer model has radius 10 Å, constituting 8 Å hard-sphere and 2 Å soft-
sphere radius in the L J -type interactions defined in the Expresso package. The Na+
and Cl− ions have 2 Å soft-sphere radius with zero hard-sphere radius. For the second
model, the monomer point charge is -1 and the monomer–monomer distance is 1.7 Å.
The LJ parameter for the monomer–ions nonbonded interaction for the second model
equals that for the first model to define a 10 Å radius chain. The DNA concentration
is chosen to be 2.0 mg/ml (within the real life experimental regime) and the salt 1:1
concentration is 10 mM. The total amount of monomer for the first chain model is 60
and for the second model is 720 implying the same contour length and simulation box
length possessed by both models.

The RDF between DNA and Na+ ion for both models is depicted in Fig. 11). First
we compare the first peak of the RDF profiles (r ∼ 12.5 Å). This is related to the Na+
concentration at the polyelectrolyte surface. The concentration of Na+ at this distance
for the first model (dotted line) is much larger than the second model (solid line). This
is reasonable on physical grounds since the monomer charge of the first model is many
times larger than the second model. Another difference is that in the first model the
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Fig. 11 The DNA–Na+ RDF from two different DNA monomer models

Na+ concentration accumulation starts even at a distance smaller than the sum of the
DNA-Na+ radius (12 Å), due to the strong monomer–Na+ attraction. For example at
distance 11.88 Å, the RDF of the first model has value 34.72 and for the second model
it is 0.42.

The obvious difference of the shape between the first and second model RDF is
the fluctuation or oscillation in the DNA-Na+ RDF of the first model (dashed line).
At equilibrium we find the fluctuation is quasi-periodic with peak distances about
18–21 Å. Since the Na+ ion radius is 2 Å, it is clear that the rdf oscillation does not occur
due to the Na+ condensation layer. These observations of such oscillations suggests the
non-uniform Na+ condensation at the polyelectrolyte surface. The shorter the distance
between a point to the monomer point charge, the bigger the negative potential felt by
that point due to the monomer charge. The more negative the potential at any point,
the more probable it is for the Na+ to exist there at that point. Since the monomer
bond distances and the bonding and physical parameters of the monomers are set to
be the same throughout the polyelectrolyte, the non-uniformity is periodic along the
chain axis. Since the distance between two monomer point charges in the first model is
relatively large (20.4 Å), the non-uniformity of the Na+ distribution within a surface
perpendicular to the bond axis could be clearly detected. Thus in the first model, the
RDF from a central monomer oscillates over a radial distance range because of the
non-uniform Na+ concentration at the surface monomer neighbors.

In the second model, the distance between two consecutive point charge is much
smaller than the first model. Also the monomer–monomer distance 1.7 Å is smaller
than the Na+ radius 2 Å. It creates a relatively uniform charged surface for the Na+
counterion. As a consequence, in the second model we do not observe any distinct
oscillations due to the inequality of the amount of the Na+ ions condensed at the
polyelectrolyte surface.

Another point is if we do not consider the peaks due to the Na+ accumulation at
monomer neighbors, the RDF of the first model diminishes faster at low and interme-
diate radial distance, where at ∼ 20– 250 Å, the RDF of the second model is generally
larger than the first model. But the end point RDF of the second model is shorter.
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Fig. 12 The reduced electrostatic potential from two different DNA monomer models

This indicates that for the first model, the Na+ ions is densely bound at the chain
surface depleting the overall concentration elsewhere. At intermediate distances (i.e:
∼ 200–280 Å) the Na+ concentration is relatively constant before tapering to zero. For
the second model, the Na+ concentration profile decreases slower at shorter distances
compared to the first model but decrease faster at larger distances. In the second model,
there is no indication of a plateau in the Na+ concentration over the indicated range.
The standard relationship between electrostatic potential (of mean force)ψ(r) and the
RDF is

g(r) = ci (r)

c∞
= e

−zi eψ(r)
kT , (38)

where zi , e, k, and T , are respectively the valence of the particle i , proton charge,
Boltzmann constant and temperature. We convert the RDF data in Fig. 11 to the
reduced potential φ(r) data in Fig. 12 where φ(r) = eψ(r)/kT : φ(r) describes the
mean electrostatic potential at a distance r from any central charged monomer. As
expected, from Fig. 12 we observe the fluctuations of the electrostatic potential for the
first model which is not observed for the second model, as expected from the RDF’s.

The axial distance between two nearest distant phosphate groups on opposite sides
of the DNA thread is ∼ 1.7Å, and the nearest axial distance on the same side is 3.4Å.
The experimental DNA cross-section is 20Å. If we represent the DNA as a string of
bonded spheres, with the above dimensions, we would have the following topologies
where all have the same charge (q/e) to bond length (b/Å) ratio, where topology X
refers to X = {b, q} and in addition where b would represent the the diameter of the
polymer thread. We define A = {20.4,−12},B = {3.4,−2},C = {1.7,−1}. Using
the expression (27) given earlier, for n = b to n = s (s = 6/2 or 3 helical turns) for salt
concentration cs/mM, we have the following table of results [2, p. 43, Tab. 3.3] for the
derived L p values with the following settings (L0

p = 500Å, lB = 7.13Å, l0 = 1Å) for
the same kh and kθ and other interaction parameters given earlier: The data in Table 2
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Table 2 Table showing
variation of L p with topology

cs L p(A) L p(B) L p(C)

100 601.91 559.24 554.10

10.0 778.5 617.34 603.95

1.0 888.91 646.05 628.03

0.1 933.51 656.55 636.78

shows that even for modeling the flexibility of the chain (let alone the potentials and
concentration profiles in space), different choices of size and charge parameters that
preserves a particular global variable like the charge density of the polyion with the
same ff’s leads to significant differences in the L p variable, which characterizes flex-
ibility. The above seems to indicate that whilst ’refinement’ of models does lead to
elucidation of structure [6], yet the choice of basic all-atom models that preserve
global properties such as the charge densities still can give rise to different predicted
physical properties and charge density distributions and thermodynamic state function
values. Where distribution functions are concerned (such as RDF’s), different models
with different charge allocations [52, p. 207] on atomic sites for inorganic or small
organometallic lattices and molecules could conceivably lead to different profiles based
on the results presented here. For such systems, such variations may not be deemed
significant, but for biological systems, perhaps changes of profiles would indeed be
relevant, since this review shows that progress in the elucidation of biophysical phe-
nomena is usually related to incorporation of greater detail. If this is to be the trend in
the future, aided no doubt by greater computational power, then one might expect that
broad ranging force-fields, like those developed by Jorgensen [55] would have to to be
presented as a subset of many others, some specifically determined for the system of
interest where the parameters cannot be provided by universal ff’s. Many utilities, like
the ATEN package [56] have a fixed set of such ff’s for liquid state simulation, includ-
ing OPLS that has to be manually modified, which can be tedious and impractical if
used for MD of complex biophysical systems and organometallic lattices and zeolite
lattices that contain fluid state molecules of polyelectrolytes. Such complex systems,
such as the Cu-BTC metal-organic framework, the ff parameters have to be derived via
DFT MD [57] (such as CPMD)[58]. There exists now an elaborate research program
in supplying ff’s for ionic liquid simulation [59–61] where the earlier softer ff’s due
to dispersive forces are not considered completely adequate. One might expect that a
program for biological systems would be developed by matured and well developed
research groups, such as that of Lavery and coworkers [62] for modeling requirements
[63] where the computational methodology would require generating input parame-
ters that are specific to the system of interest and where computational tools would
be required for this input generation. Since the development of specialized ff’s for IL
and organometallic lattice simulations specific to the system is gradually becoming
systematic [57], one could anticipate a similar trend to emerge in biophysical systems.
Finally the snapshots in Fig. 10 and the shape profiles (Figs. 1–9) clearly depicts distinct
topologies for the different ξ intensity parameter and ionic concentrations. It seems
as if such elaborate topological structures are implied at the heart of much research
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in catalysis, according to the reviews [64,65]. The impression in these reviews is that
current research is motivated by practical considerations of determining the appropri-
ate catalyst for reactions of commercial importance, which [65] focuses on, whereas
[64] is more concerned with theory and general principles and applications of these
principles. IL’s have been described as having many functions over and beyond that of
being a “green” solvent and as having a means of providing a “biphasic” environment,
where the catalyst resides with the IL phase during the reaction [65, p. 3667] and the
products and reactants in the other phase, leading to efficient separation of products
and the catalyst; the term catalyst immobilization is associated with this phenomena.
IL’s share with polyelectrolytes an extended distribution of charges along a molecular
backbone of high asymmetry (at the cationic species at least). The “acidity” of the
IL with respect to the catalyst can be “tuned” based on the compositional ratio of the
IL components. Clearly, electronic transfer processes, of such importance in catalytic
activity is involved, but one suspects that the IL’s also have a significant orientational
role to play in supporting the catalyst. Whilst the review [65] is replete with chemical
information, there is less discussion of topology and principles which is covered in
greater detail by Hardacre et al. where some aspects of topology is mentioned, and
these include (1) stabilization to agglomeration of both individual metallic nanopar-
ticle catalyst and gold cluster nanoparticle by linkage to sulphonate terminated thiol
IL (2) immobilization of IL in biphasic catalysis [64, p. 2620] (3) the use of IL’s
as templates to create complex structures (zeotype and other frameworks) [66] that
have controlled catalytic functions [64, p. 2622]. If the DLVO theory [64, refs. 63–65
therein] has been used to account for some of the above interactions involving IL that
is routinely used to account for biophysical system behavior [67] and polyelectrolyte
systems, it seems almost inevitable that in time, the theoretical techniques developed
to treat polyelectrolyte biophysical systems can be extended to tackle the problem of
catalysis with IL’s in lattice structures which can be viewed as a specialized polyelec-
trolyte whose orientational properties within the lattices contribute significantly in
several ways to the specific catalytic phenomena. In our polyelectrolyte systems, we
observe how changes in the value of the ξ variable leads to the formation of remarkably
complex structures; such aspects of “tuning” are yet to be fully realized and exploited
in the theory of catalysis.

5 Conclusion

For modest chain lengths, one can deduce various thermodynamical parameters over
temperature; in the case of polyelectrolytes, we observe within just one isolated over-
all neutral polyelectrolyte system topological transition phenomena which can be
exploited in applications, because of the various shape structures that are formed by
non-bonding forces such as non-screened Coulombic forces; structures could be main-
tained without the impediment of bonds which might constrain the motion of external
molecular species in a molecular assembly. Obviously such properties are of impor-
tance in chemical reaction dynamics and catalysis where the topology of the system is
of importance in providing for a dynamical route in a chemical reaction with a lower
activation energy; one can observe this phenomena concerning the shape of the simple
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polyelectrolyte chain of this work; such observations and their implementation would
allow for the design of charged systems that can form different shapes as desired
in applications that are stabilized by the counterions externally. Before this feature
can be exploited however, further systematic detailed study needs to be undertaken
to understand how such designs can be implemented. Concerning phase transitions,
these might be defined for simplistic models that often require infinite systems [68,
van Hove, p. 403, Yang and Lee, p. 407] and a limited species of particle types with
very elementary short range forces operating, as in the Ising model. For these systems,
one might be able to deduce various critical exponents. Some have attempted to extend
the concept of phase transitions by recourse to lattice (gas) models [68, p. 418, p. 436
(eqns. 5a-b)]. Then there are other models that presuppose discontinuity in second
order derivatives and the possibility of invoking an order parameter, as in the Landau
theory. Since biological systems are so much more complex, it would be best to keep
an open view with regard to whether such phase transitions can be absolutely char-
acterized by these theories that are useful for much simpler systems. Experimentally,
DSC and other methods have been used to define the regime of transition phenom-
ena [52, p. 60, Sect. 3.1.2.1]; in the same spirit, perhaps sharp transitions of certain
thermodynamical variables like the specific heat or mean square fluctuation of energy
variables in MD simulations that are largely non-synthetic might be utilized to tenta-
tively characterize such systems. The presence of strong electrostatic interactions that
is not so obviously apparent from classical equipartition does seem to indicate that
such free energy differences ( in particular that of Helmholtz and Gibbs’) could be uti-
lized for energy storage. Traditionally, in the field of electrochemistry, little attention
has been paid to ionic molecular structure and energy changes associated with these
structures under various charge intensity parameters; with the appropriate selection
of coupled sub-assemblies and electrodes, these potential energies (due to structure)
could be tapped electrochemically.

Finally, the distribution of particles are of importance in rationalizing biological
activity [69] in MD simulations, but where the distribution functions are severely
dependent on the type of model that is constructed. Since the current trend seems
to be the incorporation of greater detail to the MD simulations to account for the
experimental data, we may expect that specialized groups and their software would
play a significant role in automation of ff’s which are specific for the system so that
the appropriate structural parameters and potentials for atomic simulations could be
used unambiguously to validate experimental results.
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